3.11 \(\int \cot ^2(c+d x) (a+a \sin (c+d x)) \, dx\)

Optimal. Leaf size=41 \[ \frac{a \cos (c+d x)}{d}-\frac{a \cot (c+d x)}{d}-\frac{a \tanh ^{-1}(\cos (c+d x))}{d}-a x \]

[Out]

-(a*x) - (a*ArcTanh[Cos[c + d*x]])/d + (a*Cos[c + d*x])/d - (a*Cot[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.051557, antiderivative size = 41, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.316, Rules used = {2710, 2592, 321, 206, 3473, 8} \[ \frac{a \cos (c+d x)}{d}-\frac{a \cot (c+d x)}{d}-\frac{a \tanh ^{-1}(\cos (c+d x))}{d}-a x \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^2*(a + a*Sin[c + d*x]),x]

[Out]

-(a*x) - (a*ArcTanh[Cos[c + d*x]])/d + (a*Cos[c + d*x])/d - (a*Cot[c + d*x])/d

Rule 2710

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Int[Expan
dIntegrand[(g*Tan[e + f*x])^p, (a + b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2
, 0] && IGtQ[m, 0]

Rule 2592

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> With[{ff = FreeFactors[S
in[e + f*x], x]}, Dist[ff/f, Subst[Int[(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, (a*Sin[e + f*x])/ff
], x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3473

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(b*Tan[c + d*x])^(n - 1))/(d*(n - 1)), x] - Dis
t[b^2, Int[(b*Tan[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \cot ^2(c+d x) (a+a \sin (c+d x)) \, dx &=\int \left (a \cos (c+d x) \cot (c+d x)+a \cot ^2(c+d x)\right ) \, dx\\ &=a \int \cos (c+d x) \cot (c+d x) \, dx+a \int \cot ^2(c+d x) \, dx\\ &=-\frac{a \cot (c+d x)}{d}-a \int 1 \, dx-\frac{a \operatorname{Subst}\left (\int \frac{x^2}{1-x^2} \, dx,x,\cos (c+d x)\right )}{d}\\ &=-a x+\frac{a \cos (c+d x)}{d}-\frac{a \cot (c+d x)}{d}-\frac{a \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\cos (c+d x)\right )}{d}\\ &=-a x-\frac{a \tanh ^{-1}(\cos (c+d x))}{d}+\frac{a \cos (c+d x)}{d}-\frac{a \cot (c+d x)}{d}\\ \end{align*}

Mathematica [C]  time = 0.0480103, size = 75, normalized size = 1.83 \[ -\frac{a \cot (c+d x) \, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};-\tan ^2(c+d x)\right )}{d}+\frac{a \cos (c+d x)}{d}+\frac{a \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )}{d}-\frac{a \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^2*(a + a*Sin[c + d*x]),x]

[Out]

(a*Cos[c + d*x])/d - (a*Cot[c + d*x]*Hypergeometric2F1[-1/2, 1, 1/2, -Tan[c + d*x]^2])/d - (a*Log[Cos[(c + d*x
)/2]])/d + (a*Log[Sin[(c + d*x)/2]])/d

________________________________________________________________________________________

Maple [A]  time = 0.029, size = 57, normalized size = 1.4 \begin{align*} -ax+{\frac{\cos \left ( dx+c \right ) a}{d}}-{\frac{a\cot \left ( dx+c \right ) }{d}}+{\frac{a\ln \left ( \csc \left ( dx+c \right ) -\cot \left ( dx+c \right ) \right ) }{d}}-{\frac{ca}{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^2*(a+a*sin(d*x+c)),x)

[Out]

-a*x+a*cos(d*x+c)/d-a*cot(d*x+c)/d+1/d*a*ln(csc(d*x+c)-cot(d*x+c))-1/d*c*a

________________________________________________________________________________________

Maxima [A]  time = 2.30272, size = 73, normalized size = 1.78 \begin{align*} -\frac{2 \,{\left (d x + c + \frac{1}{\tan \left (d x + c\right )}\right )} a - a{\left (2 \, \cos \left (d x + c\right ) - \log \left (\cos \left (d x + c\right ) + 1\right ) + \log \left (\cos \left (d x + c\right ) - 1\right )\right )}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/2*(2*(d*x + c + 1/tan(d*x + c))*a - a*(2*cos(d*x + c) - log(cos(d*x + c) + 1) + log(cos(d*x + c) - 1)))/d

________________________________________________________________________________________

Fricas [B]  time = 1.43844, size = 236, normalized size = 5.76 \begin{align*} -\frac{a \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) \sin \left (d x + c\right ) - a \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) \sin \left (d x + c\right ) + 2 \, a \cos \left (d x + c\right ) + 2 \,{\left (a d x - a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{2 \, d \sin \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*(a*log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - a*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) + 2*a*cos(d*x +
 c) + 2*(a*d*x - a*cos(d*x + c))*sin(d*x + c))/(d*sin(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a \left (\int \sin{\left (c + d x \right )} \cot ^{2}{\left (c + d x \right )}\, dx + \int \cot ^{2}{\left (c + d x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**2*(a+a*sin(d*x+c)),x)

[Out]

a*(Integral(sin(c + d*x)*cot(c + d*x)**2, x) + Integral(cot(c + d*x)**2, x))

________________________________________________________________________________________

Giac [B]  time = 1.25007, size = 146, normalized size = 3.56 \begin{align*} -\frac{6 \,{\left (d x + c\right )} a - 6 \, a \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right ) - 3 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \frac{2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 3 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 10 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 3 \, a}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/6*(6*(d*x + c)*a - 6*a*log(abs(tan(1/2*d*x + 1/2*c))) - 3*a*tan(1/2*d*x + 1/2*c) + (2*a*tan(1/2*d*x + 1/2*c
)^3 + 3*a*tan(1/2*d*x + 1/2*c)^2 - 10*a*tan(1/2*d*x + 1/2*c) + 3*a)/(tan(1/2*d*x + 1/2*c)^3 + tan(1/2*d*x + 1/
2*c)))/d